The probability of
an electron penetrating barrier of 10 eV is equal to 0.8 %.  If the width of the potential barrier is 0.6
nm, find the energy of the electron.

Respuesta :

The energy of the electron in the given region is 9.38 eV.

The given parameters:

  • Probability, e = 0.8%
  • Height of barrier, U₀ = 10 eV
  • Width of the barrier, w = 0.6 nm

What is electron barrier penetration?

When a particle of energy E less than the potential cannot penetrate inside that region.

The exponential factor is calculated as follows;

[tex]T = e^{-2 \alpha a} \\\\ 0.008 = e^{-2(0.6 \times 10^{-9})\alpha}\\\\ -2(0.6 \times 10^{-9})\alpha = ln(0.008)\\\\ -2(0.6 \times 10^{-9})\alpha = -4.828\\\\ \alpha = \frac{-4.828}{-2(0.6 \times 10^{-9})} \\\\ \alpha = 4.023 \times 10^9[/tex]

The energy of the electron is calculated as follows;

[tex]\alpha = \sqrt{\frac{2m(U_0 -E)}{h^2} } \\\\ 4.023 \times 10^9 = \sqrt{\frac{2 ( 9.11 \times 10^{-31} kg)(10 \ eV -E) \ \times 1.6\times 10^{-19} \ J/eV}{(1.055 \times 10^{-34} \ J.s)^2 } } \\\\ (4.023 \times 10^9)^2 = \frac{2 ( 9.11 \times 10^{-31} kg)(10 \ eV -E) \ \times 1.6\times 10^{-19} \ J/eV}{(1.055 \times 10^{-34} \ J.s)^2 }\\\\ 2 ( 9.11 \times 10^{-31} )(10 \ eV -E) 1.6\times 10^{-19} = (4.023 \times 10^9)^2 (1.055 \times 10^{-34} \ )^2\\\\ [/tex]

[tex]10eV - E = \frac{(4.023 \times 10^9)^2\times (1.055 \times 10^{-34} \ )^2}{2 ( 9.11 \times 10^{-31} ) \times 1.6\times 10^{-19}} \\\\ 10eV - E = 0.62 \ eV\\\\ E = 10 \ eV - 0.62\ eV\\\\ E = 9.38 \ eV[/tex]

Thus, the energy of the electron in the given region is 9.38 eV.

Learn more about electron barrier penetration here: https://brainly.com/question/5838250

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE