What coordinates on the unit circle are associated with the angle measure?
Drag coordinates into each box to match the angle measure.


What coordinates on the unit circle are associated with the angle measure Drag coordinates into each box to match the angle measure class=

Respuesta :

The tangent of the given angles are the ratios y to the x coordinate of

the point of the terminal side on the unit circle.

The correct options are;

  • [tex]\dfrac{34 \cdot \pi}{3} \Longleftrightarrow \underline{ \left(-\dfrac{1}{2}, \ -\dfrac{\sqrt{3} }{2} \right)}[/tex]

  • [tex]-\dfrac{7 \cdot \pi}{4} \Longleftrightarrow \underline{ \left(\dfrac{\sqrt{2} }{2}, \ \dfrac{\sqrt{2} }{2} \right)}[/tex]

  • [tex]210^{\circ} \Longleftrightarrow \underline{ \left(-\dfrac{\sqrt{3} }{2}, \ -\dfrac{1}{2} \right)}[/tex]

How to find the points on the unit circle

The tangent of an angle is given as follows;

[tex]tan (\theta) = \mathbf{ \dfrac{Opposite}{Adjacent}} = \dfrac{\Delta y}{\Delta x}[/tex]

First angle

An angle given is; [tex]\mathbf{\dfrac{34 \cdot \pi}{3}}[/tex]

Therefore;

[tex]tan \left(\dfrac{34 \cdot \pi }{3} \right) = \mathbf{ \sqrt{3}}[/tex]

The above result can be obtained as follows;

[tex]\sqrt{3} = \mathbf{ \dfrac{-\dfrac{\sqrt{3} }{2} }{-\dfrac{1}{2} }}[/tex]

Which is obtained when we have;

[tex]\left( \Delta x, \, \Delta y\right) = \mathbf{\left(-\dfrac{1}{2}, \, -\dfrac{\sqrt{3} }{2} \right)}[/tex]

Therefore

The required coordinates is therefore;

  • [tex]\dfrac{34 \cdot \pi}{3} \Longleftrightarrow \left(-\dfrac{1}{2} , \ -\dfrac{\sqrt{3} }{2} \right)[/tex]

Second angle

The angle, [tex]\mathbf{-\dfrac{7 \cdot \pi}{4}}[/tex], gives; [tex]tan \left(-\dfrac{7 \cdot \pi}{4} \right) = 1[/tex]

The above value can be obtained as follows;

[tex]\mathbf{\dfrac{\dfrac{\sqrt{2} }{2} }{\dfrac{\sqrt{2} }{2} }} = 1[/tex]

Which gives;

  • [tex]-\dfrac{7 \cdot \pi}{4} \Longleftrightarrow \left(\dfrac{\sqrt{2} }{2}, \, \dfrac{\sqrt{2} }{2} \right)[/tex]

Third angle

The angle 210° gives; tan(210°) = [tex]\mathbf{\frac{1}{\sqrt{3} }}[/tex], which can be obtained as follows;

[tex]\sqrt{ \dfrac{1}{3} } = \mathbf{\dfrac{-\dfrac{1}{2} }{-\dfrac{\sqrt{3} }{2} }}[/tex]

Therefore;

  • [tex]210^{\circ} \Longleftrightarrow \left(-\dfrac{\sqrt{3} }{2}, \ -\dfrac{1}{2} \right)[/tex]

Learn more about the unit circle here:

https://brainly.com/question/1673530

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE