find the dy/dx
y= sin²x/cos²x

Answer:
d y dx=0
Explanation:
From the given
y=sin2x+cos2x
The right side of the equation is
=1
y=1
d y d x=d d x(1)=0
or we can do it this way.
y = sin2x+cos2x
d y d x=2
⋅(sinx)2−1
⋅
d d x(sinx)+2
(cosx)2−1 d d x(cosx)
d y d x=2⋅
sinx⋅cosx+2⋅cosx⋅(−sinx)
dydx=2⋅sinx⋅cosx−2⋅sinx⋅cosx
dydx=0
God bless....I hope the explanation is useful.
Since we have
[tex]y = \dfrac{\sin^2(x)}{\cos^2(x)} = \tan^2(x)[/tex]
by definition of tangent, differentiating with the chain rule gives
[tex]\dfrac{dy}{dx} = \boxed{2 \tan(x) \sec^2(x)}[/tex]
(second choice)