Respuesta :

Answer:

d y dx=0

Explanation:

From the given

y=sin2x+cos2x

The right side of the equation is

=1

y=1

d y d x=d d x(1)=0

or we can do it this way.

y = sin2x+cos2x

d y d x=2

⋅(sinx)2−1

d d x(sinx)+2

(cosx)2−1 d d x(cosx)

d y d x=2⋅

sinx⋅cosx+2⋅cosx⋅(−sinx)

dydx=2⋅sinx⋅cosx−2⋅sinx⋅cosx

dydx=0

God bless....I hope the explanation is useful.

Since we have

[tex]y = \dfrac{\sin^2(x)}{\cos^2(x)} = \tan^2(x)[/tex]

by definition of tangent, differentiating with the chain rule gives

[tex]\dfrac{dy}{dx} = \boxed{2 \tan(x) \sec^2(x)}[/tex]

(second choice)

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE