Respuesta :

Answer:

[tex]\sqrt{10} +\sqrt{15} -\sqrt{14} -\sqrt{21}[/tex]

Step-by-step explanation:

Let's first distribute the √2 :

[tex]\sqrt{2} (\sqrt{5} )-\sqrt{2}( \sqrt{7} )=\sqrt{10} -\sqrt{14}[/tex]

Now we can distribute the √3 :

[tex]\sqrt{3} (\sqrt{5})- \sqrt{3} (\sqrt{7} )=\sqrt{15} -\sqrt{21}[/tex]

Now we add these two together to get :

[tex]\sqrt{10} +\sqrt{15} -\sqrt{14} -\sqrt{21}[/tex]

Answer: [tex]\sqrt{10} + \sqrt{15} - \sqrt{14} -\sqrt{21}[/tex]

Step-by-step explanation:

[tex](\sqrt{2} + \sqrt{3} ) (\sqrt{5} -\sqrt{7} )[/tex]

Apply the distributive property by multiplying each term of  [tex]\sqrt{2} + \sqrt{3}[/tex] by each term of [tex]\sqrt{5} - \sqrt{7}[/tex].

[tex]\sqrt{2} \sqrt{5} - \sqrt{2} \sqrt{7} + \sqrt{3} \sqrt{5} - \sqrt{3} \sqrt{7}[/tex]

To multiply [tex]\sqrt{2}[/tex] and [tex]\sqrt{5}[/tex] multiply the numbers under the square root.

[tex]\sqrt{10} - \sqrt{2}\sqrt{7} + \sqrt{3} \sqrt{5} - \sqrt{3} \sqrt{7}[/tex]

To multiply [tex]\sqrt{2}[/tex] and [tex]\sqrt{7}[/tex] multiply the numbers under the square root.

[tex]\sqrt{10} -\sqrt{14} + \sqrt{3} \sqrt{5} -\sqrt{3} \sqrt{7}[/tex]

To multiply [tex]\sqrt{3}[/tex] and [tex]\sqrt{5}[/tex] multiply the numbers under the square root.

[tex]\sqrt{10} - \sqrt{14} + \sqrt{15} -\sqrt{3} \sqrt{7}[/tex]

To multiply [tex]\sqrt{3}[/tex] and [tex]\sqrt{7}[/tex] multiply the numbers under the square root.

[tex]\sqrt{10} - \sqrt{14} + \sqrt{15} - \sqrt{21}[/tex]

Hope it helps and have a great day! =D

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE