Simplify this expression.

Answer:
[tex]\sqrt{10} +\sqrt{15} -\sqrt{14} -\sqrt{21}[/tex]
Step-by-step explanation:
Let's first distribute the √2 :
[tex]\sqrt{2} (\sqrt{5} )-\sqrt{2}( \sqrt{7} )=\sqrt{10} -\sqrt{14}[/tex]
Now we can distribute the √3 :
[tex]\sqrt{3} (\sqrt{5})- \sqrt{3} (\sqrt{7} )=\sqrt{15} -\sqrt{21}[/tex]
Now we add these two together to get :
[tex]\sqrt{10} +\sqrt{15} -\sqrt{14} -\sqrt{21}[/tex]
Answer: [tex]\sqrt{10} + \sqrt{15} - \sqrt{14} -\sqrt{21}[/tex]
Step-by-step explanation:
[tex](\sqrt{2} + \sqrt{3} ) (\sqrt{5} -\sqrt{7} )[/tex]
Apply the distributive property by multiplying each term of [tex]\sqrt{2} + \sqrt{3}[/tex] by each term of [tex]\sqrt{5} - \sqrt{7}[/tex].
[tex]\sqrt{2} \sqrt{5} - \sqrt{2} \sqrt{7} + \sqrt{3} \sqrt{5} - \sqrt{3} \sqrt{7}[/tex]
To multiply [tex]\sqrt{2}[/tex] and [tex]\sqrt{5}[/tex] multiply the numbers under the square root.
[tex]\sqrt{10} - \sqrt{2}\sqrt{7} + \sqrt{3} \sqrt{5} - \sqrt{3} \sqrt{7}[/tex]
To multiply [tex]\sqrt{2}[/tex] and [tex]\sqrt{7}[/tex] multiply the numbers under the square root.
[tex]\sqrt{10} -\sqrt{14} + \sqrt{3} \sqrt{5} -\sqrt{3} \sqrt{7}[/tex]
To multiply [tex]\sqrt{3}[/tex] and [tex]\sqrt{5}[/tex] multiply the numbers under the square root.
[tex]\sqrt{10} - \sqrt{14} + \sqrt{15} -\sqrt{3} \sqrt{7}[/tex]
To multiply [tex]\sqrt{3}[/tex] and [tex]\sqrt{7}[/tex] multiply the numbers under the square root.
[tex]\sqrt{10} - \sqrt{14} + \sqrt{15} - \sqrt{21}[/tex]
Hope it helps and have a great day! =D