Respuesta :

The sum of angles in a parallelogram adds up to 360 degrees

The values of x and y are 25 and 15, respectively.

The angles are given as:

[tex]\mathbf{\angle 1 = 4x + 13}[/tex]

[tex]\mathbf{\angle 2 = 4y + 7}[/tex]

[tex]\mathbf{\angle 3 = 3x - 8}[/tex]

[tex]\mathbf{\angle 4= 5x - 12}[/tex]

The opposite angles of a parallelogram are equal.

So, we have:

[tex]\mathbf{4x + 13 = 5x - 12}[/tex]

Collect like terms

[tex]\mathbf{5x - 4x = 13 + 12}[/tex]

[tex]\mathbf{x = 25}[/tex]

Simiarly, we have:

[tex]\mathbf{4y + 7 = 3x -8}[/tex]

Substitute 25 for x

[tex]\mathbf{4y + 7 = 3 \times 25 -8}[/tex]

[tex]\mathbf{4y + 7 = 75 -8}[/tex]

[tex]\mathbf{4y + 7 = 67}[/tex]

Subtract 7 to both sides

[tex]\mathbf{4y = 60}[/tex]

Divide both sides by 4

[tex]\mathbf{y = 15}[/tex]

Hence, the values of x and y are 25 and 15, respectively.

Read more about quadrilaterals at:

https://brainly.com/question/6321910?referrer=searchResults

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE