a) let p,q and r be propositions. Simplify the following compound proposition: ((¬ r)∧p∧q)∨((¬ r)∧(¬ p)∧q).
b) Using two different methods determine whether the propositions (p⟶q)⟶q and p∨q are logically equivalent.

Respuesta :

a) Starting with

(¬r ∧ p ∧ q) ∨ (¬r ∧ ¬p ∧ q)

distribute the disjunction (∨) :

((¬r ∧ p ∧ q) ∨ ¬r) ∧ ((¬r ∧ p ∧ q) ∨ ¬p) ∧ ((¬r ∧ p ∧ q) ∨ q)

and once more among the grouped statements:

(¬r ∧ p ∧ q) ∨ ¬r ≡ (¬r ∨ ¬r) ∧ (p ∨ ¬r) ∧ (q ∨ ¬r)

(¬r ∧ p ∧ q) ∨ ¬p ≡ (¬r ∨ ¬p) ∧ (p ∨ ¬p) ∧ (q ∨ ¬p)

(¬r ∧ p ∧ q) ∨ ¬p ≡ (¬r ∨ q) ∧ (p ∨ q) ∧ (q ∨ q)

So, the original statement is equivalent to

[(¬r ∨ ¬r) ∧ (p ∨ ¬r) ∧ (q ∨ ¬r)] ∧ [(¬r ∨ ¬p) ∧ (p ∨ ¬p) ∧ (q ∨ ¬p)] ∧ [(¬r ∨ q) ∧ (p ∨ q) ∧ (q ∨ q)]

which reduces to

[¬r ∧ (p ∨ ¬r) ∧ (q ∨ ¬r)] ∧ [(¬r ∨ ¬p) ∧ (q ∨ ¬p)] ∧ [(¬r ∨ q) ∧ (p ∨ q) ∧ q]

and further to

¬r ∧ (p ∨ ¬r) ∧ (¬r ∨ ¬p)(q ∨ ¬p) ∧ (p ∨ q) ∧ q

For any statements X and Y, we have the identity

• X ≡ (X ∨ Y) ∧ (X ∨ ¬Y)

so another step of simplification reduces the underlined expressions to

¬r ∧ ¬rq ∧ q

which leaves us with

¬r ∧ q

###

b) Recall the identity,

p ⇒ q ≡ ¬p ∨ q

Then

(p ⇒ q) ⇒ q ≡ (¬p ∨ q) ⇒ q ≡ ¬(¬p ∨ q) ∨ q

Distributing the negation gives

(p ⇒ q) ⇒ q ≡ (p ∧ ¬q) ∨ q

and distributing the disjunction gives

(p ⇒ q) ⇒ q ≡ (p ∨ q) ∧ (¬q ∨ q)

from which it follows that

(p ⇒ q) ⇒ q ≡ p ∨ q

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE