Respuesta :
The number of permutations of the 26 letters of the English alphabet that do not contain any of the strings fish, rat, or bird is 402619359782336797900800000
Let
[tex]\mathcal{E}=\{\text{All lowercase letters of the English Alphabet}\}\\\\B=\overline{\{b,i,r,d\}} \cup \{bird\}\\\\F=\overline{\{f,i,s,h\}} \cup \{fish\}\\\\R=\overline{\{r,a,t\}} \cup \{rat\}\\\\FR=\overline{\{f,i,s,h,r,a,t\}} \cup \{fish,rat\}[/tex]
Then
[tex]Perm(\mathcal{E})=\{\text{All orderings of all the elements of } \mathcal{E}\}\\\\Perm(B)=\{\text{All orderings of all the elements of } \mathcal{E} \text{ containing bird}\}\\\\Perm(F)=\{\text{All orderings of all the elements of } \mathcal{E} \text{ containing fish}\}\\\\Perm(R)=\{\text{All orderings of all the elements of } \mathcal{E} \text{ containing rat}\}\\\\Perm(FR)=\{\text{All orderings of all the elements of } \mathcal{E} \text{ containing both fish and rat}\}\\[/tex]
Note that since
[tex]F \cap R=\varnothing[/tex], [tex]Perm(F)\cap Perm(R)\ne \varnothing[/tex]
But since
[tex]B \cap R \ne \varnothing[/tex], [tex]Perm(B)\cap Perm(R)= \varnothing[/tex]
and
[tex]B \cap F \ne \varnothing[/tex] , [tex]Perm(B)\cap Perm(F)= \varnothing[/tex]
Since
[tex]|\mathcal{E} |=26 \text{, then, } |Perm(\mathcal{E})|=26! \\\\|B|=26-4+1=23 \text{, then, } |Perm(B)|=23!\\\\|F|=26-4+1=23 \text{, then, } |Perm(F)|=23!\\\\|R|=26-3+1=24 \text{, then, } |Perm(R)|=24!\\\\|FR|=26-7+2=21 \text{, then, } |Perm(FR)|=21!\\[/tex]
where [tex]|Perm(X)|=\text{number of possible permutations of the elements of X taking all at once}[/tex]
and
[tex]|Perm(F) \cup Perm(R)| = |Perm(F)| + |Perm(R)| - |Perm(FR)|\\= 23!+24!- 21! \text{ possibilities}[/tex]
What we are looking for is the number of permutations of the 26 letters of the alphabet that do not contain the strings fish, rat or bird, or
[tex]|Perm(\mathcal{E})|-|Perm(B)|-|Perm(F)\cup Perm(R)|\\= 26!-23!-(23!+24!- 21!)\\= 402619359782336797900800000 \text{ possibilities}[/tex]
This link contains another solved problem on permutations:
https://brainly.com/question/7951365