Respuesta :

The value of [tex]x[/tex] associated to the extreme value of the quadratic equation [tex]k(x) = (300+10\cdot x)\cdot (5-0.2\cdot x)[/tex]. The extreme value is [tex]k\left(-\frac{5}{2} \right) = \frac{3025}{2}[/tex].

First, we need to expand the polynomial as follows:

[tex]k(x) = (300+10\cdot x)\cdot (5-0.2\cdot x)[/tex]

[tex]k(x) = 300\cdot (5-0.2\cdot x)+10\cdot x\cdot (5-0.2\cdot x)[/tex]

[tex]k(x) = 1500-60\cdot x +50\cdot x -2\cdot x^{2}[/tex]

[tex]k(x) = -2\cdot x^{2}-10\cdot x +1500[/tex]

[tex]-2\cdot x^{2}-10\cdot x +[1500-k(x)] = 0[/tex]

By the quadratic formula, we know that a value of [tex]x[/tex] pass through the axis of symmetry of the parabola if and only if the discriminant is zero:

[tex]-100-4\cdot (-2)\cdot [1500-k(x)] = 0[/tex]

And the value of [tex]x[/tex] is:

[tex]x = -\frac{(-10)}{2\cdot (-2)}[/tex]

[tex]x = -\frac{5}{2}[/tex]

And the extreme value is:

[tex]k\left(-\frac{5}{2} \right) = -2\cdot \left(-\frac{5}{2} \right)^{2}-10\cdot \left(-\frac{5}{2} \right) + 1500[/tex]

[tex]k\left(-\frac{5}{2} \right) = \frac{3025}{2}[/tex]

The value of [tex]x[/tex] associated to the extreme value of the quadratic equation [tex]k(x) = (300+10\cdot x)\cdot (5-0.2\cdot x)[/tex]. The extreme value is [tex]k\left(-\frac{5}{2} \right) = \frac{3025}{2}[/tex].

We kindly invite to check this question on symmetry: https://brainly.com/question/17759737

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE