Answer:
See below
Step-by-step explanation:
Zeroes:
[tex]f(x)=\frac{2x^2+x-6}{x-1}[/tex]
[tex]0=\frac{2x^2+x-6}{x-1}[/tex]
[tex]0=2x^2+x-6[/tex]
[tex]0=(2x-3)(x+2)[/tex]
[tex]x=\frac{3}{2},-2[/tex]
Vertical and Horizontal Asymptotes:
[tex]x\neq 1[/tex] is excluded from the domain, therefore, there's a vertical asymptote at [tex]x=1[/tex]
No horizontal asymptotes as the degree of the numerator is greater than the degree of the denominator by 1.
Oblique (Slant) Asymptote:
[tex]f(x)=\frac{2x^2+x-6}{x-1}=2x+3,R(-3)[/tex], so the oblique/slant asymptote is [tex]y=2x+3[/tex]