Respuesta :

Answer:

See below

Step-by-step explanation:

Zeroes:

[tex]f(x)=\frac{2x^2+x-6}{x-1}[/tex]

[tex]0=\frac{2x^2+x-6}{x-1}[/tex]

[tex]0=2x^2+x-6[/tex]

[tex]0=(2x-3)(x+2)[/tex]

[tex]x=\frac{3}{2},-2[/tex]

Vertical and Horizontal Asymptotes:

[tex]x\neq 1[/tex] is excluded from the domain, therefore, there's a vertical asymptote at [tex]x=1[/tex]

No horizontal asymptotes as the degree of the numerator is greater than the degree of the denominator by 1.

Oblique (Slant) Asymptote:

[tex]f(x)=\frac{2x^2+x-6}{x-1}=2x+3,R(-3)[/tex], so the oblique/slant asymptote is [tex]y=2x+3[/tex]

Ver imagen goddessboi
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE