Respuesta :
Answer:
a) 2400m on the 20th day for Charlie.
1) 728.41m of 20th day for Daniella.
Didn't find n, sorry.
Charlie ran 2400m on day 20 of his fitness program and Daniella ran 728m on day 20 of her fitness program.
It is given that Charlie and Daniella on day one both ran 500m on each subsequent day.
Charlie ran 100m more than the previous day.
Daniella increased her distance by 2% of the distance run on the previous day.
It is required to calculate how far Charlie and Daniella ran on day 20 and the value of n.
What is a sequence?
It is defined as the systematic way of representing the data that follows a certain rule of arithmetic.
Charlie ran 500m on the first day:
[tex]\rm a_1 = 500[/tex]
[tex]\rm a_2 =600[/tex] ( because charlie ran 100m more than the previous day)
It is an arithmetic progression in which the difference between two consecutive terms:
d = 600 - 500 ⇒ 100
and [tex]\rm a_n = a+d(n-1)[/tex]
[tex]\rm a_2_0 = 500+100(20-1)\\\\\rm a_2_0 = 2400m[/tex]( ∵ n = 20 )
Daniella ran 500m on the first day:
[tex]\rm b_1 = 500[/tex]
[tex]\rm b_2 = 500+ 500\times2 \%[/tex] (because Daniella increased her distance by 2% of the distance run on the previous day)
We can write [tex]\rm n^t^h[/tex] terms:
[tex]\rm b_n= 500(1+2\%)^n^-^1[/tex]
[tex]\rm b_2_0= 500(1+2\%)^2^0^-^1[/tex]
[tex]\rm b_2_0= 500(1+0.02)^1^9\\\\\rm b_2_0 = 500\times 1.02^1^9\\\\\rm b_2_0 = 500\times1.456 \Rightarrow 728.40 \approx 728 m[/tex]
[tex]\rm b_n > a_n[/tex] (given in the question)
[tex]\rm500(1+2\%)^n^-^1 > 500+100(n-1) \ \ or \\\\\rm500(1+2\%)^n^-^1 > 100n+400[/tex]
The above expression is not true for all the values of 'n' ie. 'n' can not be determined.
Thus, Charlie ran 2400m on day 20 of his fitness program and Daniella ran 728m on day 20 of her fitness programme.
Learn more about the sequence here:
brainly.com/question/21961097