Respuesta :

If c is a linear function with c(0) = 5 and c(6) = 15, then c(9) = 20

The given parameters are:

c(0)  =  5

c(6)  =  15

That is, x₁ = 0, c₁ = 5, x₂ = 6, c₂ = 15

The slope of the linear function is calculated by the formula:

[tex]m=\frac{c_2-c_1}{x_2-x_1} \\\\[/tex]

Substitute x₁ = 0, c₁ = 5, x₂ = 6, c₂ = 15 into the formula:

[tex]m=\frac{15-5}{6-0} \\\\m= \frac{10}{6} \\\\m=\frac{5}{3}[/tex]

For c(9):

x₂  =  9, c₂ = ?

Substitute  x₁ = 0, c₁ = 5 and m = 5/3 into the formula:

[tex]m=\frac{c_2-c_1}{x_2-x_1} \\\\[/tex]

[tex]\frac{5}{3}=\frac{c_2-5}{9-0} \\\\9(\frac{5}{3})= c_2 - 5\\\\15 = c_2 - 5\\\\c_2 = 15 + 5\\\\c_2 = 20[/tex]

Therefore, c(9)  =   20

Learn more here: https://brainly.com/question/19119619

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE