Answer:
[tex]r=-6,y=3[/tex]
Step-by-step explanation
- Subtract 4 from both sides of the equation
-2y=-2-4
3r+2y=-12
Subtract 4 from -2
-2y=-6
3r+2y=-12
- Divide each term in -2y=-6 by -2 and simplify
- Divide each term in -2y=-6 by -2
[tex]\frac{-2y}{-2}[/tex]=[tex]\frac{-6}{-2}[/tex]
3r+2y=-12
- Simplify the left side.
- cancel the common factor of -2
- Cancel the common factor
[tex]\frac{-2y}{-2} =\frac{-6}{-2}[/tex]
3r+2y=-12
[tex]y=\frac{-6}{-2}[/tex]
3r+2y=-12
- Simplify the right side.
- Divide -6 by -2
[tex]y=3[/tex]
[tex]3r+2y=-12[/tex]
- Replace all occurrences of y with 3 in equation.
Replace all occurrences of y in [tex]3r+2y=-12[/tex] with [tex]3[/tex]
[tex]3r+2(3)=-12[/tex]
[tex]y=3[/tex]
- Simplify the left side
- Multiply 2 by 3
[tex]3r+6=-12\\y=3[/tex]
- Move all terms not containing [tex]r[/tex] to the right side of the equation.
- Subtract [tex]6[/tex] from both sides of the equation.
[tex]3r=-12-6\\y=3[/tex]
- Subtract [tex]6[/tex] from [tex]-12[/tex].
[tex]3r=-18\\y=3[/tex]
- Divide each term in [tex]3r=-18[/tex] by [tex]3[/tex] and simplify.
Divide each term in [tex]3r=-18[/tex] by [tex]3[/tex]
[tex]\frac{3r}{3} =\frac{-18}{3} \\y=3[/tex]
- Cancel the common factor of [tex]3[/tex].
- Cancel the common factor.
[tex]\frac{3r}{3} =\frac{-18}{3} \\y=3[/tex]
- Divide [tex]r[/tex] by [tex]1[/tex].
[tex]r=\frac{-18}{3} \\y=3[/tex]
- Simplify the right side.
- Divide [tex]-18[/tex] by [tex]3[/tex].
[tex]r=-6\\y=3[/tex]