Respuesta :

Answer:

[tex]r=-6,y=3[/tex]

Step-by-step explanation

  • Subtract 4 from both sides of the equation

-2y=-2-4

3r+2y=-12

Subtract 4 from -2

-2y=-6

3r+2y=-12

  • Divide each term in -2y=-6 by -2 and simplify
  • Divide each term in -2y=-6 by -2

[tex]\frac{-2y}{-2}[/tex]=[tex]\frac{-6}{-2}[/tex]

3r+2y=-12

  • Simplify the left side.
  • cancel the common factor of -2
  • Cancel the common factor

[tex]\frac{-2y}{-2} =\frac{-6}{-2}[/tex]

3r+2y=-12

  • Divide y by 1

[tex]y=\frac{-6}{-2}[/tex]

3r+2y=-12

  • Simplify the right side.
  • Divide -6 by -2

[tex]y=3[/tex]

[tex]3r+2y=-12[/tex]

  • Replace all occurrences of y with 3 in equation.

Replace all occurrences of y in [tex]3r+2y=-12[/tex] with [tex]3[/tex]

[tex]3r+2(3)=-12[/tex]

[tex]y=3[/tex]

  • Simplify the left side
  • Multiply 2 by 3

[tex]3r+6=-12\\y=3[/tex]

  • Move all terms not containing [tex]r[/tex] to the right side of the equation.
  • Subtract [tex]6[/tex] from both sides of the equation.

[tex]3r=-12-6\\y=3[/tex]

  • Subtract [tex]6[/tex] from [tex]-12[/tex].

[tex]3r=-18\\y=3[/tex]

  • Divide each term in [tex]3r=-18[/tex] by [tex]3[/tex] and simplify.

Divide each term in [tex]3r=-18[/tex] by [tex]3[/tex]

[tex]\frac{3r}{3} =\frac{-18}{3} \\y=3[/tex]

  • Simplify the left side.
  • Cancel the common factor of [tex]3[/tex].
  • Cancel the common factor.

[tex]\frac{3r}{3} =\frac{-18}{3} \\y=3[/tex]

  • Divide [tex]r[/tex] by [tex]1[/tex].

[tex]r=\frac{-18}{3} \\y=3[/tex]

  • Simplify the right side.
  • Divide [tex]-18[/tex] by [tex]3[/tex].

[tex]r=-6\\y=3[/tex]

 

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE