Respuesta :

Answer:

[tex]\huge\boxed{D)\frac{3p}{p-3} }[/tex]

Step-by-step explanation:

The first thing that can help you here is factoring every term.

[tex]p^2-4p-12[/tex]

Factor.

[tex](p-6)(p+2)[/tex]

[tex]6p+12[/tex]

Factor.

[tex]6(p+2)[/tex]

18p

Factor, keeping in mind the denominator of the other term.

[tex]6(3p)[/tex]

[tex]p^2-9p+18[/tex]

Factor.

[tex](p-6)(p-3)[/tex]

Now you have simplified your original problem:

[tex]\frac{p^2-4p-12}{6p+12} *\frac{18p}{p^2-9p+18}[/tex]

into:

[tex]\frac{(p-6)(p+2)}{6(p+2)} *\frac{6(3p)}{(p-6)(p-3)}[/tex]

Now, after multiplying the numerator and denominator of the fractions:

[tex]\frac{(p-6)(p+2)(6)(3p)}{(6)(p+2)(p-6)(p-3)}[/tex]

Then, you can simplify the fraction by cancelling terms:

[tex]\frac{3p}{p-3}[/tex]

Hope it helps :) and let me know if you want me to elaborate.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE