Respuesta :
Answer:
138
Explanation:
(since there's a blank next to "9x y j", I'm assuming the y of F(x, y) is 9x[tex]\sqrt{y}[/tex] j)
1) find the partial derivative of each:
[tex](6y^{\frac{3}{2} })i + (9x\sqrt{y} )j[/tex]
[tex]f_{x} =(6y^{\frac{3}{2} })_{x} = \int\limits{6y^{\frac{3}{2} }} \, dx = 6xy^{\frac{3}{2} } +c \\\\f_{y} = (9x\sqrt{y} )_{y} = \int\limits{9xy^{\frac{1}{2} } } \, dy = 9x(\frac{2}{3} )y^{\frac{3}{2} } +c = 6xy^{\frac{3}{2} } +c[/tex]
2) use partial integrals to make gradient of f:
take whatever you got from partial integral and add them together (if they repeat, just use it once)
[tex]F =[/tex] Vf (V = gradient of)
[tex]F(x, y) = 6xy^{\frac{3}{2} }[/tex]
3) Evaluate the integrals with given points:
Integral of F dotted with dr = F(point B) - F(point A) = F(3, 4) - F(1, 1)
[tex]F(point B) = 6(3)(4)^{\frac{3}{2} }\\F(Point A) = 6(1)(1)^{\frac{3}{2}}\\F(point B) - F(pointA) = 6(3)(4)^{\frac{3}{2} }-(6(1)(1)^{\frac{3}{2}})[/tex]
= 144 - 6 = 138 units of work

Work done by the force field F in moving an object from A to B = 138 J
Given data :
Force field F(x,y) = [tex]6y^{\frac{3}{2} }i + (9x\sqrt{y} ) j[/tex]
Step 1 : determine the partial derivatives of the vector quantity
Fx = ∫ [tex]6y^{\frac{3}{2} }i = 6xy^{\frac{3}{2} } + c[/tex]
Fy = ∫ [tex](9x \sqrt{y})_{y} = 9x(\frac{2}{3})y^{\frac{3}{2} } + c[/tex]
Equating the partial derivatives :
[tex]9x(\frac{2}{3})y^{\frac{3}{2} } + c[/tex] = [tex]6xy^{\frac{3}{2} } + c[/tex]
therefore the gradient of F i.e. F = vF = F( x,y ) = [tex]6xy^{\frac{3}{2} }[/tex]
Next step : Determine the work done
Work done ( F.dr ) = [ F(point b ) = F( 3,4 ) ] - [ F(point A) = F( 1,1 ) ]
F(3,4 ) = 6(3)(4)[tex]^{\frac{3}{2} }[/tex] = 144
F( 1,1 ) = 6(1)(1)[tex]^{\frac{3}{2} }[/tex] = 6
Therefore the work done by the force field = 144 - 6 = 138 J
Hence we can conclude that the work done by the force field F is = 138 J
Learn more about work done : https://brainly.com/question/21854305