Respuesta :

Answer:

Below.

Step-by-step explanation:

f) (a + b)^3 - 4(a + b)^2  

The (a+ b)^2 can be taken out to give:

= (a + b)^2(a + b - 4)

= (a + b)(a + b)(a + b - 4).

g)  3x(x - y) - 6(-x + y)

=  3x( x - y) + 6(x - y)

= (3x + 6)(x - y)

= 3(x + 2)(x - y).

h) (6a - 5b)(c - d) + (3a + 4b)(d - c)

=  (6a - 5b)(c - d) + (-3a - 4b)(c - d)

= -(c - d)(6a - 5b)(3a + 4b).

i)  -3d(-9a - 2b) + 2c (9a + 2b)

= 3d(9a + 2b) + 2c (9a + 2b)

=  3d(9a + 2b) + 2c (9a + 2b).

= (3d + 2c)(9a + 2b).

j)  a^2b^3(2a + 1) - 6ab^2(-1 - 2a)

=  a^2b^3(2a + 1) + 6ab^2(2a + 1)

= (2a + 1)( a^2b^3 + 6ab^2)

The GCF of a^2b^3 and  6ab^2 is ab^2, so we have:

(2a + 1)ab^2(ab + 6)

= ab^2(ab + 6)(2a + 1).

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE