Respuesta :

The sine law of triangles can be proved by dividing the triangle into right-triangles.

Option (c) proves the first equality in the law of sines

From the question, we have:

h equals to the distance from point C to segment AB

The sine of angle is:

[tex]\mathbf{sin(\theta) = \frac{Opposite}{Hypotenuse}}[/tex]

For angle at A, we have:

[tex]\mathbe{\theta = A}[/tex]

[tex]\mathbf{Hypotenuse = b}\\\mathbf{Opposite = h}[/tex]

So, we have:

[tex]\mathbf{sin(\theta) = \frac{Opposite}{Hypotenuse}}[/tex]

Substitute values for Opposite, Hypotenuse and theta

[tex]\mathbf{sin A = \frac{h}{b}}[/tex]

Similarly

[tex]\mathbf{sin B = \frac{h}{a}}[/tex]

Make h the subject

[tex]\mathbf{h = a\ sinB}[/tex]

Substitute [tex]\mathbf{h = a\ sinB}[/tex] in [tex]\mathbf{sin A = \frac{h}{b}}[/tex]

[tex]\mathbf{sin A = \frac{a\ sinB}{b}}[/tex]

Divide both sides by a

[tex]\mathbf{\frac{sin A}{a} = \frac{sinB}{b}}[/tex]

Hence, the correct option is (c).

Read more about proof of sine law at:

https://brainly.com/question/4637169

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE