Respuesta :

Answer:

log ( x^2/(yz^2))

Step-by-step explanation:

2 log x - log y - 2 log z

We know a log b = log b^a

Rewriting

2 log x = log x^2  and 2 log z = log z^2

log x^2 - log y -  log z^2

Rewriting

log x^2 - (log y +  log z^2)

We know that log a + log b = log (a*b)

log x^2 - (log (y z^2))

And we know log a - log b = log (a/b)

log ( x^2/(yz^2))

Answer:

[tex]log\frac{x^2}{yz^2}[/tex]

Step-by-step explanation:

Simplify 2log(x) by moving 2

inside the logarithm.

Simplify 2log(x) by moving 2

inside the logarithm.

log(x^2)−log(y)−2log(z)

Simplify −2log(z)

by moving 2

inside the logarithm.

log(x^2)−log(y)−log(z^2)

Use the quotient property of logarithms, logb (x)−logb (y)=logb (x/y)

[tex]log\frac{x^2}{y} - log(z^2)[/tex]

Use the quotient property of logarithms, logb(x)−logb(y)=logb (x/y)

[tex]log (\frac{x}{y})/( \frac{1}{z^2}}][/tex]

Multiply the numerator by the reciprocal of the denominator.

[tex]log\frac{x^2\\ }{y}.\frac{1}{z^2}[/tex]

Combine.

[tex]log\frac{x^2*1\\ }{yz^2}[/tex]

Multiply [tex]x^{2}[/tex] by 1

[tex]log\frac{x^2}{yz^2}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE