Respuesta :
Answer:
log ( x^2/(yz^2))
Step-by-step explanation:
2 log x - log y - 2 log z
We know a log b = log b^a
Rewriting
2 log x = log x^2 and 2 log z = log z^2
log x^2 - log y - log z^2
Rewriting
log x^2 - (log y + log z^2)
We know that log a + log b = log (a*b)
log x^2 - (log (y z^2))
And we know log a - log b = log (a/b)
log ( x^2/(yz^2))
Answer:
[tex]log\frac{x^2}{yz^2}[/tex]
Step-by-step explanation:
Simplify 2log(x) by moving 2
inside the logarithm.
Simplify 2log(x) by moving 2
inside the logarithm.
log(x^2)−log(y)−2log(z)
Simplify −2log(z)
by moving 2
inside the logarithm.
log(x^2)−log(y)−log(z^2)
Use the quotient property of logarithms, logb (x)−logb (y)=logb (x/y)
[tex]log\frac{x^2}{y} - log(z^2)[/tex]
Use the quotient property of logarithms, logb(x)−logb(y)=logb (x/y)
[tex]log (\frac{x}{y})/( \frac{1}{z^2}}][/tex]
Multiply the numerator by the reciprocal of the denominator.
[tex]log\frac{x^2\\ }{y}.\frac{1}{z^2}[/tex]
Combine.
[tex]log\frac{x^2*1\\ }{yz^2}[/tex]
Multiply [tex]x^{2}[/tex] by 1
[tex]log\frac{x^2}{yz^2}[/tex]