Answer:
our vertex for f(x) = 3x² + 18x + 32 = (-3, 5 )
Step-by-step explanation:
let me write the standard form of a quadratic equation
[tex]a {x}^{2} + bx + c[/tex]
Now let me rewrite the original equation
[tex]3 {x}^{2} + 18x + 32[/tex]
Now we use this simple formula to find the vertex (h, k)
[tex]x = h = - \frac{b}{2a} \\ = - \frac{18}{2(3)} = - \frac{18}{6} = - 3 \\ h = - 3[/tex]
substitute -3 for x back into our original equation to solve for y our k value of our vertex
[tex]y = 3 ({ - 3})^{2} + 18( - 3) + 32 \\ = 3(9) - 54 + 32 \\ = 27 + 32 - 54 \\ = 59 - 54 \\ k = 5[/tex]
our vertex for f(x) = 3x² + 18x + 32 = (-3, 5 )