Applying the general Ohm's Law, it is found that:
a) The impedance is of 8 + 4i ohms.
b) The current is of 17.6 + 8.8i amperes.
c) The impedance is of -11i ohms.
Ohm's Law states that voltage is current multiplied by impedance, that is:
[tex]V = IZ[/tex]
Standard voltage of 220 volts, thus [tex]V = 220[/tex].
Item a:
Current is 22 - 11i amps, thus [tex]I = 22 - 11i[/tex]. Then:
[tex]V = IZ[/tex]
[tex]220 = (22 - 11i)Z[/tex]
[tex]Z = \frac{220}{22 - 11i} \times \frac{22 + 11i}{22 + 11i}[/tex]
Considering [tex]i^2 = -1[/tex]
[tex]Z = \frac{220(22 + 11i)}{605}[/tex]
[tex]Z = 0.3636(22 + 11i)[/tex]
[tex]Z = 8 + 4i[/tex]
The impedance is of 8 + 4i ohms.
Item b:
Impedance is 10 - 5i ohms, thus [tex]Z = 10 - 5i[/tex]. Then
[tex]V = IZ[/tex]
[tex]220 = (10 - 5i)I[/tex]
[tex]I = \frac{220}{10 - 5i} \times \frac{10 + 5i}{10 + 5i}[/tex]
[tex]I = \frac{220(10 + 5i)}{125}[/tex]
[tex]I = 1.76(10 + 5i)[/tex]
[tex]I = 17.6 + 8.8i[/tex]
The current is of 17.6 + 8.8i amperes.
Item c:
Current is 20i amps, thus [tex]I = 20i[/tex]. Then:
[tex]V = IZ[/tex]
[tex]220 = 20iZ[/tex]
[tex]Z = \frac{220}{20i} \times \frac{20i}{20i}[/tex]
[tex]Z = -\frac{220 \times 20i}{400}[/tex]
[tex]Z = -11i[/tex]
The impedance is of -11i ohms.
A similar problem is given at https://brainly.com/question/16850726