Respuesta :

(1)

(a) Use the fact that [tex]\sqrt{x^2} = |x|[/tex] for all [tex]x[/tex]. Since [tex]x\to+\infty[/tex], we have [tex]x>0[/tex] and [tex]|x| = x[/tex].

[tex]\displaystyle \lim_{x\to\infty} \frac{\sqrt{9x^2 - 2}}{x + 4} = \lim_{x\to\infty} \frac{\sqrt{x^2} \sqrt{9 - \frac2{x^2}}}{x + 4} \\\\= \lim_{x\to\infty} \frac{ x \sqrt{9 - \frac2{x^2}}}{x+4} \\\\= \lim_{x\to\infty} \frac{\sqrt{9 - \frac2{x^2}}}{1 + \frac4x} \\\\= \frac{\sqrt9}1 = \boxed{3}[/tex]

(b) This time [tex]x\to-\infty[/tex], so [tex]x < 0[/tex] and [tex]|x| = -x[/tex].

[tex]\displaystyle \lim_{x\to\infty} \frac{\sqrt{9x^2 - 2}}{x + 4} = \lim_{x\to\infty} \frac{\sqrt{x^2} \sqrt{9 - \frac2{x^2}}}{x + 4} \\\\= \lim_{x\to\infty} \frac{ \boxed{-x} \sqrt{9 - \frac2{x^2}}}{x+4} \\\\= (-1) \times \lim_{x\to\infty} \frac{\sqrt{9 - \frac2{x^2}}}{1 + \frac4x} \\\\= -\frac{\sqrt9}1 = \boxed{-3}[/tex]

(c) We immediately have

[tex]\displaystyle \lim_{x\to\infty} (x - \sqrt x) = \boxed{\infty}[/tex]

since [tex]x > \sqrt x[/tex] for all [tex]x > 1[/tex].

(d) Introduce a difference of squares by factoring in the limand's conjugate. The rest mirrors what we did in (a)/(b).

[tex]\displaystyle \lim_{x\to\infty} \left(\sqrt{x^2 + 12x} - x\right) = \lim_{x\to\infty} \frac{\left(\sqrt{x^2+12x} - x\right) \left(\sqrt{x^2+12x} + x\right)}{\sqrt{x^2 + 12x} + x} \\\\ = \lim_{x\to\infty} \frac{\left(\sqrt{x^2+12x}\right)^2 - x^2}{\sqrt{x^2+12x}+x} \\\\ = \lim_{x\to\infty} \frac{12x}{\sqrt{x^2+12x}+x} \\\\ = \lim_{x\to\infty} \frac{12}{\sqrt{1 + \frac{12}x} + 1} = \frac{12}{\sqrt1 + 1} = \boxed{6}[/tex]

(e) Divide through by the highest-degree exponential term.

[tex]\displaystyle \lim_{x\to\infty} \frac{12e^{2x} - 3e^{3x}}{2e^{2x} + 4e^{3x}} = \lim_{x\to\infty} \frac{12e^{-x} - 3}{2e^{-x} + 4} = \frac{0 - 3}{0 + 4} = \boxed{-\frac34}[/tex]

(2) By definition of the derivative, we have

[tex]f'(x) = \displaystyle \lim_{h\to0} \frac{f(x+h) - f(x)}h[/tex]

For [tex]f(x) = \sqrt{x^2+1}[/tex], the limit becomes

[tex]f'(x) = \displaystyle \lim_{h\to0} \frac{\sqrt{(x+h)^2+1} - \sqrt{x^2+1}}h[/tex]

Factor in the conjugate.

[tex]f'(x) = \displaystyle \lim_{h\to0} \frac{\left(\sqrt{(x+h)^2+1} - \sqrt{x^2+1}\right) \left(\sqrt{(x+h)^2+1} + \sqrt{x^2+1}\right)}{h \left(\sqrt{(x+h)^2+1} + \sqrt{x^2+1}\right)}[/tex]

[tex]f'(x) = \displaystyle \lim_{h\to0} \frac{\left(\sqrt{(x+h)^2+1}\right)^2 - \left(\sqrt{x^2+1}\right)^2}{h \left(\sqrt{(x+h)^2+1} + \sqrt{x^2+1}\right)}[/tex]

[tex]f'(x) = \displaystyle \lim_{h\to0} \frac{\bigg((x+h)^2+1\bigg) - (x^2+1)}{h \left(\sqrt{(x+h)^2+1} + \sqrt{x^2+1}\right)}[/tex]

[tex]f'(x) = \displaystyle \lim_{h\to0} \frac{2xh + h^2}{h \left(\sqrt{(x+h)^2+1} + \sqrt{x^2+1}\right)}[/tex]

[tex]f'(x) = \displaystyle \lim_{h\to0} \frac{2x + h}{\sqrt{(x+h)^2+1} + \sqrt{x^2+1}}[/tex]

[tex]\implies \boxed{f'(x) = \displaystyle \lim_{h\to0} \frac{x}{\sqrt{x^2+1}}}[/tex]

(3) The tangent line to

[tex]y = \frac1{x^2+1}[/tex]

at the point (2, 1/5) has slope equal to the derivative [tex]\frac{dy}{dx}[/tex] when [tex]x = 2[/tex]. Compute the derivative; since [tex]y = \frac1{f(x)^2}[/tex] where [tex]f(x)[/tex] is the function from the previous problem, using the chain rule gives

[tex]y = \dfrac1{f(x)^2} \implies \dfrac{dy}{dx} = -\dfrac{2f'(x)}{f(x)^3} = -\dfrac{2 \times \frac{x}{\sqrt{x^2+1}}}{\left(\sqrt{x^2+1}\right)^3} \\\\ \implies \dfrac{dy}{dx} = -\dfrac{2x}{(x^2+1)^2}[/tex]

The tangent line at (2, 1/5) then has slope

[tex]\dfrac{dy}{dx}\bigg|_{x=2} = -\dfrac{2\times2}{(2^2+1)^2} = -\dfrac4{25}[/tex]

Using the point-slope formula, the equation of the tangent line is

[tex]y - \dfrac15 = -\dfrac4{25} (x - 2) \implies \boxed{y = -\dfrac{4x - 13}{25}}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE