Given segment AX with point Q between A and X. AX = 25. AQ = 2y + 1. QX = 3y - 1.
We can set up an equation to solve for y using the fact that
y =
AQ =
QX =
Q

Respuesta :

Answer:

y=5

AQ=11

QX=14

Q is not a midpoint

Step-by-step explanation:

A line segment can be divided into equal or unequal segments

The values of x, AQ and QX are 5, 11 and 14.

The given parameters are:

[tex]\mathbf{AX = 25}[/tex]

[tex]\mathbf{AQ = 2y + 1}[/tex]

[tex]\mathbf{QX = 3y - 1}[/tex]

[tex]\mathbf{AX = 25}[/tex] can be rewritten as:

[tex]\mathbf{AQ + QX =25}[/tex]

Substitute values for AQ and QX

[tex]\mathbf{2y + 1 + 3y - 1 =25}[/tex]

Execute like terms

[tex]\mathbf{5y =25}[/tex]

Divide both sides by 5

[tex]\mathbf{y =5}[/tex]

Substitute 5 for y in [tex]\mathbf{AQ = 2y + 1}[/tex] and [tex]\mathbf{QX = 3y - 1}[/tex]

[tex]\mathbf{AQ = 2 \times 5 + 1 = 11}[/tex]

[tex]\mathbf{QX = 3 \times 5 - 1 = 14}[/tex]

Hence, the values of x, AQ and QX are 5, 11 and 14.

Read more about line segments at:

https://brainly.com/question/18983323

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE