Find the perimeter of the triangle whose vertices are (−4,4), (−4,1), and (−8,−4). Write the exact answer. Do not round.

Respuesta :

Answer:

Step-by-step explanation:

The perimeter of the triangle is [tex]3 + \sqrt{41} + 5\sqrt{5}[/tex] units

How to determine the perimeter?

The coordinates are given as:

(−4,4), (−4,1), and (−8,−4).

Calculate the distance between the vertices using:

[tex]d = \sqrt{(x_2 -x_1)^2 + (y_2 -y_1)^2[/tex]

So, we have:

[tex]AB = \sqrt{(-4 + 4)^2 + (4-1)^2} = 3[/tex]

[tex]BC = \sqrt{(-4 + 8)^2 + (1+4)^2} = \sqrt{41[/tex]

[tex]AC = \sqrt{(-4 + 8)^2 + (4+4)^2} = \sqrt{80[/tex]

The perimeter is the sum of the side lengths.

So, we have:

[tex]P = 3 + \sqrt{41} + \sqrt{80}[/tex]

Expand

[tex]P = 3 + \sqrt{41} + 4\sqrt{5}[/tex]

Hence, the perimeter of the triangle is [tex]3 + \sqrt{41} + 5\sqrt{5}[/tex] units

Read more about perimeter at:

https://brainly.com/question/24571594

#SPJ6

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE