Respuesta :
The perimeter of the triangle is [tex]3 + \sqrt{41} + 5\sqrt{5}[/tex] units
How to determine the perimeter?
The coordinates are given as:
(−4,4), (−4,1), and (−8,−4).
Calculate the distance between the vertices using:
[tex]d = \sqrt{(x_2 -x_1)^2 + (y_2 -y_1)^2[/tex]
So, we have:
[tex]AB = \sqrt{(-4 + 4)^2 + (4-1)^2} = 3[/tex]
[tex]BC = \sqrt{(-4 + 8)^2 + (1+4)^2} = \sqrt{41[/tex]
[tex]AC = \sqrt{(-4 + 8)^2 + (4+4)^2} = \sqrt{80[/tex]
The perimeter is the sum of the side lengths.
So, we have:
[tex]P = 3 + \sqrt{41} + \sqrt{80}[/tex]
Expand
[tex]P = 3 + \sqrt{41} + 4\sqrt{5}[/tex]
Hence, the perimeter of the triangle is [tex]3 + \sqrt{41} + 5\sqrt{5}[/tex] units
Read more about perimeter at:
https://brainly.com/question/24571594
#SPJ6