Respuesta :

towl35

Answer:

[tex]y = {(x + 3)}^{2} - 14[/tex]

Step-by-step explanation:

The original equation

[tex] f(x) = {x }^{2} + 6x - 5[/tex]

vertex form

[tex]y = a {(x - h)}^{2} + k \\ where \: (h. \: k) \: is \: the \: vertex[/tex]

solve for the x coordinate of the vertex, h

[tex]x = h = - \frac{b}{2a} = - \frac{6}{2(1)} = - \frac{6}{2} = - 3 \\ x = h = - 3[/tex]

substitute -3 back into the original equation to solve for y

[tex]y = { (- 3)}^{2} + 6( - 3) - 5 \\ y = 9 - 18 - 5 \\ y = 4 - 18 \\ y = k = - 14 [/tex]

substitute h and k values into the vertex form

a = 1 So we can omit it

[tex]y = {(x - ( - 3)}^{2} - 14 \\ y = {(x + 3)}^{2} - 14[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE

Otras preguntas