Respuesta :

Answer:

x = [tex]\frac{5}{4} + \frac{ \sqrt{5} }{4}[/tex]

x = [tex]\frac{5}{4} - \frac{ \sqrt{5} }{4}[/tex]

Step-by-step explanation:

Quadratic equation:

[tex]x = \frac{-b +- \sqrt{b^2 - 4ac} }{2a}[/tex]

The equation is:

[tex]4x^2 - 10x + 5 = 0\\[/tex]

So:

a = 4

b = -10

c = 5

Plug the variables into the quadratic equation:

[tex]x = \frac{-(-10) +- \sqrt{(-10)^2 - (4 * 4 * 5)} }{(2 * 4)}[/tex]

[tex]x = \frac{\sqrt{10 +- \sqrt{100 - 80} } }{8}[/tex]

[tex]x = \frac{10 + \sqrt{20} }{8}[/tex]

Divide both sides by 8:

10 ÷ 8 = [tex]\frac{5}{4}[/tex]

[tex]\sqrt{20}[/tex] ÷ 8 = [tex]\frac{\sqrt{5}}{4}[/tex]

[tex]\frac{5}{4}[/tex] +- [tex]\frac{\sqrt{5}}{4}[/tex]

This means that the solutions that satisfy the equation is:

x = [tex]\frac{5}{4} + \frac{ \sqrt{5} }{4}[/tex]

x = [tex]\frac{5}{4} - \frac{ \sqrt{5} }{4}[/tex]

Hope this helps!

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE