HELLP MEEEEEE
PLEASE

Answer:
x = [tex]\frac{5}{4} + \frac{ \sqrt{5} }{4}[/tex]
x = [tex]\frac{5}{4} - \frac{ \sqrt{5} }{4}[/tex]
Step-by-step explanation:
Quadratic equation:
[tex]x = \frac{-b +- \sqrt{b^2 - 4ac} }{2a}[/tex]
The equation is:
[tex]4x^2 - 10x + 5 = 0\\[/tex]
So:
a = 4
b = -10
c = 5
Plug the variables into the quadratic equation:
[tex]x = \frac{-(-10) +- \sqrt{(-10)^2 - (4 * 4 * 5)} }{(2 * 4)}[/tex]
[tex]x = \frac{\sqrt{10 +- \sqrt{100 - 80} } }{8}[/tex]
[tex]x = \frac{10 + \sqrt{20} }{8}[/tex]
Divide both sides by 8:
10 ÷ 8 = [tex]\frac{5}{4}[/tex]
[tex]\sqrt{20}[/tex] ÷ 8 = [tex]\frac{\sqrt{5}}{4}[/tex]
[tex]\frac{5}{4}[/tex] +- [tex]\frac{\sqrt{5}}{4}[/tex]
This means that the solutions that satisfy the equation is:
x = [tex]\frac{5}{4} + \frac{ \sqrt{5} }{4}[/tex]
x = [tex]\frac{5}{4} - \frac{ \sqrt{5} }{4}[/tex]
Hope this helps!