geometry
length midpoint and point

Step-by-step explanation:
given points are,
A = -4 , -8
B = 11 , 5
2) we know,
distance = √(x_2 - x_1)² + (y_2 - y_1)²
according to the formula we got,
→ √(11 - (-4))² + (5 - (-8)²
→ √(15)² + (11)²
→ √25 + 121
→ √146
→ 12.08 ans.
3) Midpoint = (x_1 + x_2 /2 ) + (y_1 + y_2 /2 )
according to the formula
→ (-4) + 11 /2) , ((-8) + (5)/2)
→ 7/2 , -3/2
→ 3.5 , -1.5
therefore, Midpoints of the given line segment is ( 3.5, -1.5)
4) point in the 3/10 the way from A to B
→ 12.08/10
→ 1.208
now, 1.208 × 3
→ 3.624
therefore, point away from A to B is 3.62
hope this answer helps you dear...take care and may u have a great day ahead!
Answer:
Step-by-step explanation:
A( -4 , -8) ; B( 11 , 5)
[tex]a) AB = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{2})^{2}}\\\\=\sqrt{(11-[-4])^{2}+(5-[-8])^{2}}\\\\=\sqrt{(11+4)^{2}+(5+8)^{2}}}\\\\=\sqrt{15^{2}+13^{2}}\\\\\=\sqrt{225+169}\\\\=\sqrt{394}\\\\[/tex]
b)
[tex]Midpoint(\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2})\\=(\dfrac{-4+11}{2},\dfrac{-8+5}{2})\\\\[/tex]
[tex]=(\dfrac{7}{2},\dfrac{-3}{2})[/tex]
= (3.5 , - 1.5)
c) m : n = 3 : 7
[tex]\left ( \dfrac{mx_{2}+nx_{1}}{m+n} , \dfrac{my_{2}+ny_{1}}{m+n} \right )\\\\= \left ( \dfrac{11*3+(-4)*7}{3+7}, \dfrac{5*3+(-8)*7}{3+7} \right )\\\\= \left ( \dfrac{33-21}{10},\dfrac{15-56}{10} \right )\\\\=\left ( \dfrac{12}{10},\dfrac{-41}{10} \ right )[/tex]