Respuesta :

Step-by-step explanation:

given points are,

A = -4 , -8

B = 11 , 5

2) we know,

distance = (x_2 - x_1)² + (y_2 - y_1)²

according to the formula we got,

(11 - (-4))² + (5 - (-8)²

(15)² + (11)²

25 + 121

146

12.08 ans.

3) Midpoint = (x_1 + x_2 /2 ) + (y_1 + y_2 /2 )

according to the formula

(-4) + 11 /2) , ((-8) + (5)/2)

7/2 , -3/2

3.5 , -1.5

therefore, Midpoints of the given line segment is ( 3.5, -1.5)

4) point in the 3/10 the way from A to B

12.08/10

1.208

now, 1.208 × 3

3.624

therefore, point away from A to B is 3.62

hope this answer helps you dear...take care and may u have a great day ahead!

Answer:

Step-by-step explanation:

A( -4 , -8)  ; B( 11 , 5)

[tex]a) AB = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{2})^{2}}\\\\=\sqrt{(11-[-4])^{2}+(5-[-8])^{2}}\\\\=\sqrt{(11+4)^{2}+(5+8)^{2}}}\\\\=\sqrt{15^{2}+13^{2}}\\\\\=\sqrt{225+169}\\\\=\sqrt{394}\\\\[/tex]

b)

[tex]Midpoint(\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2})\\=(\dfrac{-4+11}{2},\dfrac{-8+5}{2})\\\\[/tex]

[tex]=(\dfrac{7}{2},\dfrac{-3}{2})[/tex]

= (3.5 , - 1.5)

c) m : n = 3 : 7

[tex]\left ( \dfrac{mx_{2}+nx_{1}}{m+n} , \dfrac{my_{2}+ny_{1}}{m+n} \right )\\\\= \left ( \dfrac{11*3+(-4)*7}{3+7}, \dfrac{5*3+(-8)*7}{3+7} \right )\\\\= \left ( \dfrac{33-21}{10},\dfrac{15-56}{10} \right )\\\\=\left ( \dfrac{12}{10},\dfrac{-41}{10} \ right )[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE