contestada

The height h in feet of a projectile launched from the top of a 96-foot tall tower when time t = 0 is
given by h(t) = 96 + 80t - 16t2, where t is time in seconds. What is the maximum height the projectile
reaches? How long will it take for the projectile to strike the ground?

Respuesta :

We need derivative of h(t)

[tex]\\ \sf\longmapsto \dfrac{d}{dx}-16t^2+82t+96[/tex]

[tex]\\ \sf\longmapsto -32t+82[/tex]

  • Now t=0

[tex]\\ \sf\longmapsto h(0)[/tex]

[tex]\\ \sf\longmapsto -32(0)+82[/tex]

[tex]\\ \sf\longmapsto 82m[/tex]

Hence

.[tex]\\ \sf\longmapsto H_{max}=96+82=178m[/tex]

Answer:

[tex]{ \rm{h(t) = 96 + 80t - 16 {t}^{2} }} \\ \\ { \rm{ \frac{dh}{dt} = 0 + 80 - (2 \times 16)t}} \\ \\ { \rm{ \frac{dh}{dt} = - 32t + 80}}[/tex]

• At maximum height, dh/dt is 0

[tex]{ \rm{ - 32t + 80 = 0}} \\ \\ { \rm{ - 32t = - 80}} \\ \\ { \rm{t = 2.5 \: seconds}}[/tex]

• Maximum height = 96 + (80 × 2.5) - (16 × 2.5²)

Max. height = 196 meters

Answer:

[tex]{ \rm{h(t) = 96 + 80t - 16 {t}^{2} }} \\ \\ { \rm{ \frac{dh}{dt} = 0 + 80 - (2 \times 16)t}} \\ \\ { \rm{ \frac{dh}{dt} = - 32t + 80}}[/tex]

• At maximum height, dh/dt is 0

[tex]{ \rm{ - 32t + 80 = 0}} \\ \\ { \rm{ - 32t = - 80}} \\ \\ { \rm{t = 2.5 \: seconds}}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE