Respuesta :

Answer:

y = -1/2c - 8

Step-by-step explanation:

2c - y = 6

2c -6 = y

Slope: 2. Slope of the perpendicular line: -1/2

Point (-4,-6)

y-intercept = -6 - (-1/2)(-4)

b = -6 -2 = -8

The equation of the line that passes through the point [tex](-4,-6)[/tex]  and is

perpendicular to the line [tex]2c - y = 6[/tex] is [tex]2x_{2} -y_{2} +2=0[/tex].

What is equation of the line ?

Equation of the line: The general equation of a straight line is [tex]y = mx + c[/tex]. This variable [tex]'c'[/tex] is called the intercept on the [tex]y-axis[/tex].  And [tex]y = c[/tex] is the value where the line cuts the [tex]y-axis[/tex].

Here,

[tex]m=[/tex] the gradient,

[tex]c=[/tex]  the intercept on the y-axis

We have,

An equation of the line that passes through the point [tex](-4,-6)[/tex]  and is

perpendicular to the line [tex]2c - y = 6[/tex] .

So,

Line [tex]2c - y = 6[/tex]  

[tex]2c - y = 6[/tex]

⇒ [tex]y=2c-6[/tex]

and  [tex]y = mx + c[/tex]

On comparing above two equations

[tex]m=2[/tex]

and Slope [tex]=-\frac{1}{m}[/tex]

So, Slope [tex]=-\frac{1}{2}[/tex]

Now,

Slope of the equation [tex](m)=\frac{y_{2} -y_{1} }{x_{2} -x_{1} }[/tex]

Slope of required equation [tex]=\frac{-1}{Slope \ of \ 2c-y=6}[/tex]

                                              [tex]=\frac{-1}{\frac{(-1)}{2} }=2[/tex]

Now,

Equation of line with slope [tex]2[/tex] and passing through point [tex](-4,-6)[/tex] ,

Slope of the equation [tex](m)=\frac{y_{2} -y_{1} }{x_{2} -x_{1} }[/tex]

[tex]2=\frac{y_{2} -(-6) }{x_{2} -(-4) }[/tex]

[tex]2x_{2} +8=y_{2} +6[/tex]

[tex]2x_{2} -y_{2} +2=0[/tex]

So, the equation of the line is  [tex]2x_{2} -y_{2} +2=0[/tex] .

Hence, we can say that the equation of the line that passes through the point [tex](-4,-6)[/tex]  and is perpendicular to the line [tex]2c - y = 6[/tex] is [tex]2x_{2} -y_{2} +2=0[/tex].

To know more about Equation of the line click here

https://brainly.com/question/2564656

#SPJ3

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE