Answer:
x = 2/3*n*180° + 5° or x = 2/3*n*180° + 35°
(x = 4/3*n*π + (π/36) or x = 4/3*n*π + (7π/36))
Step-by-step explanation:
sin3x + √3 cos3x = √2
1/2 * sin3x + (√3/2)*cos3x = √2/2
sin 30° * sin3x + cos 30°* cos3x = √2/2
sin (30° + 3x) = sin (2n*180° + 45°) or sin (30° + 3x) = sin (2n*180° + 135°)
30° + 3x = 2n*180° + 45° 3 x = 2n*180° + 15° x = 2/3*n*180° + 5° or
30° + 3x = 2n*180° + 135° 3 x = 2n*180° + 105° x = 2/3*n*180° + 35°
Please check the calculation carefully by yourself, I wish i didn't get a careless mistake.