Respuesta :

Differentiate both sides with respect to x, using the chain rule for the sine term:

[tex]\cos(x) + \sin(y) = 1[/tex]

[tex]\implies -\sin(x) + \cos(y)\dfrac{\mathrm dy}{\mathrm dx} = 0[/tex]

Solve for dy/dx :

[tex]-\sin(x) + \cos(y)\dfrac{\mathrm dy}{\mathrm dx} = 0 \\\\ \cos(y) \dfrac{\mathrm dy}{\mathrm dx} = \sin(x) \\\\ \boxed{\dfrac{\mathrm dy}{\mathrm dx} = \dfrac{\sin(x)}{\cos(y)}}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE