Respuesta :
Answer:
-3/4a^3 b^2
Step-by-step explanation:
-27/64=-3/4^3=3^3=27/4^3=64
a^9=a^3 9/3=3 a^3
b^6 = b^2 = b^6/3 = b^2
Dividing by 3 because it is cubed.
Therefore, the monomial that is the cube of [tex]-\frac{27}{64} a^9b^6[/tex] is: [tex]\mathbf{-\frac{3}{4} a^3b^2}[/tex]
Given the following expression, [tex]-\frac{27}{64} a^9b^6[/tex]
We are required to find what monomial expression will be the cube of [tex]-\frac{27}{64} a^9b^6[/tex]
This implies that, we are to find the cube root of the given expression, [tex]-\frac{27}{64} a^9b^6[/tex] .
- Find the cube root of [tex]-\frac{27}{64}[/tex]
[tex]-(\sqrt[3]{\frac{27}{64}} )\\\\= -\frac{3}{4}[/tex]
- Find the cube root of [tex]a^9[/tex]
[tex]\sqrt[3]{a^9} \\\\= a^3[/tex]
- Find the cube root of [tex]b^6[/tex]
[tex]\sqrt[3]{b^6} \\\\= b^2[/tex]
Cube root of [tex]-\frac{27}{64} a^9b^6[/tex] equals [tex]\mathbf{-\frac{3}{4} a^3b^2}[/tex].
- Therefore, the monomial that is the cube of [tex]-\frac{27}{64} a^9b^6[/tex] is: [tex]\mathbf{-\frac{3}{4} a^3b^2}[/tex]
Learn more here:
https://brainly.com/question/2279092