Respuesta :

Answer:

AB = 2[tex]\sqrt{5\\}[/tex]cm

Step-by-step explanation:

Pure Pythagorean theorem.

[tex]c^{2}[/tex] = [tex]a^{2} + b^{2}[/tex]

a = 4.0cm

c = 6.0cm

b = ?

[tex]b^{2} = c^{2} - a^{2}[/tex]

[tex]b^{2} = 6^{2} - 4^{2}[/tex]

[tex]b^{2} = 36 - 16[/tex]

[tex]b^{2} = 20[/tex]

b = [tex]\sqrt{20}[/tex]

b = [tex]\sqrt{4 * 5}[/tex]

b = AB = 2[tex]\sqrt{5}[/tex]cm

Pythagorean Theorem!!

A^2+B^2=C^2

Your a is your line bc, and your c is your line ac (or your hypotenuse).

Input for those values.
(4)^2+B^2=(6)^2

16+B^2=36

Solve.

16+B^2=36
-16. -16
________
B^2=20

Then once you simplify to where you have a variable squared on one side, find the square root of both sides.


-/(b^2)=-/(20)

The square root of b squared is b, and the square root of 20 is 4.47.

B=4.47 centimeters
Please note that is a rounded answer within the decimal count given.
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE