Respuesta :

Answer:

f(g(x))                = -5x^2 - 30x + 49

Step-by-step explanation:

f(g(x)) is a composite function, where 'x' in f(x) is replaced by 'x^2 + 6x - 7' because the latter expression is now the input to f(x).

Write out f(x) = -5x + 14, and then replace each 'x' with '(          )'

f(           ) = -5(            ) + 14

Now insert 'g(x)' into the first set of parentheses and 'x^2 + 6x - 7' into the second set of parentheses:

f(           ) = -5(            ) + 14      becomes:

f(g(x)       = -5(x^2 + 6x - 7) + 14.  After simpification, this becomes

f(g(x))       =  -5x^2 - 30x + 35 + 14, or

f(g(x))                = -5x^2 - 30x + 49

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE