Respuesta :

Answer:

I got a few

Step-by-step explanation:

ENS=NSA( Alternate interior angle) extend lines ne and sa

NS=NS(COMMON)

ESA=NSA(Alternate interior angle extend lines es and na

To prove :

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎ㅤ‎ㅤ‎ㅤ[tex]\boxed{\large\bf{\leadsto SA = NE}}[/tex]

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀

‎ㅤ

[tex]\begin{gathered}\rm{ \underline{ \underline{ \red{Given}}}}\begin{cases}\sf{SA || NE} & \\ \\\sf{Se || NA}&\end{cases}\\\\\end{gathered} [/tex]

‎ㅤ

This means the given figure is a parallelogram .

‎ㅤ

In ESN and ASN :

‎ㅤ‎ㅤ‎ㅤ‎ㅤSN = SN ‎ㅤ‎ㅤ‎ㅤ‎ㅤ( common )

‎ㅤ‎ㅤ‎ㅤ‎ㅤ∠ ENS = ∠ NSA‎ㅤ( alternate angles )

‎ㅤ‎ㅤ‎ㅤ‎ㅤ∠ SEN = ∠ NAS‎ㅤ( opposite angles in a parallelogram )

‎ㅤ

[tex]\large\sf{\underline{\dag Hence,\:\triangle ESN \cong \triangle ASN ,\:by\: SAA\: criteria }}[/tex]

‎ㅤ

★ Therefore , SA = NE ‎ㅤ‎ㅤ ( by CPCT )

‎ㅤ

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━‎ㅤ

‎ㅤ

Answer :

‎ㅤ

‎‎[tex]\large\rm{\longrightarrow \triangle ESN \cong \triangle ASN\: by \: reason \: SAA}[/tex]

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE