[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
The quotient is equal to :
remainder :
Solution is in attachment ~
Answer:
[tex]{ \rm{( {2x}^{2} - {x}^{3} - 18 {x}^{2} - 7) \div (x + 2) }}[/tex]
• now, (x + 2) is the factor.
• let's find the value of x from the factor:
[tex]{ \rm{x + 2 = 0}} \\ { \underline{ \rm{ \: \: x = - 2 \: \: }}}[/tex]
• let's substitute for x into the quotient:
[tex]{ \rm{f(x) = {2x}^{2} - {x}^{3} - {18x}^{2} - 7 }} \\ \\ { \rm{f( - 2) = 2 {( - 2)}^{2} - {( - 2)}^{3} - 18 {( - 2)}^{2} - 7 }} \\ \\ { \rm{f( - 2) = 8 +8 - 72 - 7}} \\ \\ { \boxed{ \boxed{ \pmb{answer \: \dashrightarrow \: \: {}^{ - } 63 \: \: }}}}[/tex]