Determine the possible numbers of positive real zeros, negative real zeros, and imaginary zeros for the function.
g(x)=x^4-x^2-6

Respuesta :

towl35

Step-by-step explanation:

Solve for all roots x:

[tex] {x}^{4} - {x}^{2} - 6[/tex]

Substitute

[tex]y = {x}^{2} \\ {y}^{2} - y - 6 = 0[/tex]

The above factors into a product with two terms:

[tex](y - 3)(y + 2) = 0[/tex]

Split into two equations:

[tex]y - 3 = 0 \: \: \: or \: \: \: y + 2 = 0 \\ y = 3 \: \: \: or \: \: \: y = - 2[/tex]

Substitute back

[tex]y = {x}^{2} \\ {x}^{2}=3\: \: \: or \: \: \: {x}^{2}=-2 \\ {x}^{2}=3\\x= \sqrt{3} \: \: \: or \: \: \: x=-\sqrt{3}\\{x}^{2}=-2\\x=i\sqrt{2} \: \: \: or \: \: \: x=-i\sqrt{2}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE