Respuesta :
Answer:
steps below
Step-by-step explanation:
f(x)=(x+6)²+3 ... Gray graph
horizontal shrink by a factor of 1/2: f(2x) = (2x+6)²+3 ... green
translation 1 unit down: f(2x)-1 = (2x+6)²+2 ... purple
reflection in the x-axis: g(x) = - ((2x+6)²+2) = - (2x+6)²-2 = -4(x+3) - 2 .. Red
parabola equation: y = a(x-h)² + k (h,k): vertex
vertex (-3 , -2)

The rule of function g(x) is [tex]g(x) = -4(x + 3)^2 -2[/tex], and the vertex of the function is (-3,-2)
The equation of the function is given as:
[tex]f(x) = (x + 6)^2 + 3[/tex]
The rule of shrinking the function by a factor of 1/2 is:
[tex](x,y) \to (2x,y)[/tex]
So, we have:
[tex]f'(x) = (2x + 6)^2 + 3[/tex]
When the function is translated down by 1 unit, the rule of the transformation is:
[tex](x,y) \to (x,y-1)[/tex]
So, we have:
[tex]f"(x) = (2x + 6)^2 + 3-1[/tex]
[tex]f'"x) = (2x + 6)^2 + 2[/tex]
Lastly, the function is reflected across the x-axis,
The rule of this transformation is:
[tex](x,y) \to (x-y)[/tex]
So, we have:
[tex]g(x) = -(2x + 6)^2 -2[/tex]
Factor out 2
[tex]g(x) = -(2(x + 3))^2 -2[/tex]
Expand
[tex]g(x) = -4(x + 3)^2 -2[/tex]
The above represents the rule of function g(x), and the vertex of the function is (-3,-2)
Read more about function transformation at:
https://brainly.com/question/1548871