The required product of the function is [tex]8cos\frac{2\pi}{3}cos\frac{\pi}{3}+ 4i cos\frac{2\pi}{3}sin\frac{\pi}{3} + 2i sin\frac{2\pi}{3}cos\frac{\pi}{3} - 4i sin\frac{2\pi}{3}sin\frac{\pi}{3}[/tex]
We are to find the product of the expression
[tex]a =4cos(\frac{2\pi}{3} )+isin(\frac{2\pi}{3})\\b=2cos(\frac{\pi}{3} )+isin(\frac{\pi}{3})\\[/tex]
The product of the functions is expressed as;
[tex]ab = 4cos(\frac{2\pi}{3} )+isin(\frac{2\pi}{3})[2cos(\frac{\pi}{3} )+isin(\frac{\pi}{3}]\\ab=8cos\frac{2\pi}{3}cos\frac{\pi}{3}+ 4i cos\frac{2\pi}{3}sin\frac{\pi}{3} + 2i sin\frac{2\pi}{3}cos\frac{\pi}{3} + i^24i sin\frac{2\pi}{3}sin\frac{\pi}{3} \\ab=8cos\frac{2\pi}{3}cos\frac{\pi}{3}+ 4i cos\frac{2\pi}{3}sin\frac{\pi}{3} + 2i sin\frac{2\pi}{3}cos\frac{\pi}{3} - 4i sin\frac{2\pi}{3}sin\frac{\pi}{3}[/tex]
Note that i² = -1
Hence the required product of the function is [tex]8cos\frac{2\pi}{3}cos\frac{\pi}{3}+ 4i cos\frac{2\pi}{3}sin\frac{\pi}{3} + 2i sin\frac{2\pi}{3}cos\frac{\pi}{3} - 4i sin\frac{2\pi}{3}sin\frac{\pi}{3}[/tex]
Learn more here: https://brainly.com/question/9258225