A cylinder is placed within a cube. The diameter of the cylinder is equal to the length of each side of the cube. What is the volume of the space outside the cylinder and inside the cube if the side of the cube measures 10 inches?

Respuesta :

The volume of a shape is the amount of space in it.

The volume outside the cylinder, but inside the cube is 214.6 cubic inches

The given parameter is:

[tex]l = 10[/tex] ---- length of the cube

So, the volume of the cube is:

[tex]V_1 = l^3[/tex]

[tex]V_1 = 10^3[/tex]

[tex]V_1 = 1000[/tex]

The volume of the cylinder is:

[tex]V_2 = \pi r^2h[/tex]

The diameter (d) of the cylinder equals the length of the cube.

This means that:

[tex]d = l[/tex]

[tex]d = 10[/tex]

Divide by 2 to calculate the radius of the cylinder

[tex]r = \frac{10}{2}[/tex]

[tex]r = 5[/tex]

Also, the height of the cube is::

[tex]h =l[/tex]

[tex]h =10[/tex]

So, we have:

[tex]V_2 = \pi r^2h[/tex]

[tex]V_2 = \pi \times 5^2 \times 10[/tex]

[tex]V_2 = \pi \times 25 \times 10[/tex]

[tex]V_2 = \pi \times 250[/tex]

[tex]V_2 = 785.4[/tex]

So, the volume (V) outside the cylinder is:

[tex]V = V_1 - V_2[/tex]

[tex]V = 1000 - 785.4[/tex]

[tex]V = 214.6[/tex]

Hence, the volume outside the cylinder is 214.6 cubic inches

Read more about volumes at:

https://brainly.com/question/15861918

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE