Respuesta :

The answer to 13 is 123 degrees
The answer to 14 is 50 degrees

Answer:

13.) [tex]x^0 = 123[/tex]°

14.) [tex]y^0 = 50[/tex]°

Step-by-step explanation:

13.) The given problem reflects an unknown value involving supplementary angles, in which the sum of the angles add up to 180°.  

<ABD = 57

<DBC = [tex]x^0[/tex]

[tex]x^0 = 180 - 57[/tex]

[tex]x^0 = 123[/tex]°

14.)  [tex]3y^0 = 150[/tex]° because they are vertical angles. By definition, vertical angles are congruent, share the same vertex, and must be nonadjacent.

< POS = [tex]3y^0[/tex]

< ROQ = 150°

Therefore, given that  [tex]3y^0 = 150[/tex]°, we can solve for  [tex]y^0[/tex] by dividing both sides of the equation by 3:

[tex]\frac{3y^0}{3} = \frac{150}{3}[/tex]

[tex]y^0 = 50[/tex]°

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE