Respuesta :

[tex]\\ \sf\longmapsto x^3+y^3+z^3=k[/tex]

Use formula of (a+b+c)^3

[tex]\\ \sf\longmapsto (x+y+z)^3[/tex]

[tex]\\ \sf\longmapsto x^3+y^3+z^3+2xy+2yz+2zx[/tex]

Hence

[tex]\\ \sf\longmapsto x^3+y^3+z^3=-2xy-2yz-2zx[/tex]

[tex]\\ \sf\longmapsto k=-2xy-2yz-2zx[/tex]

Answer:

-2xy - 2yz - 2zx

Step-by-step explanation:

x³ + y³ + z³ = k

Use the Formula (x + y + z)³

[tex]\sf(x+y+z)^3[/tex]

[tex] \sf = x^3+y^3+z^3+2xy+2yz+2zx[/tex]

So ,

[tex] \sf x^3+y^3+z^3=-2xy-2yz-2zx[/tex]

[tex] \sf k = -2xy-2yz-2zx[/tex]

Conclusion:

If x³ + y³ + z³ then the value of k is -2xy - 2yz - 2zx.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE