Respuesta :

Answer:

[tex]\boxed{n(A) = 20}[/tex]

Step-by-step explanation:

We know

[tex]n(B)= 12[/tex]

From [tex]n(A \cap B)=9[/tex]  and [tex]n(A \cup B)=23[/tex], we conclude  [tex]n(A \cup B)=23 = n(A \cap B) + n(A- B) + n(B- A)[/tex]

Once  [tex]n(B)= 12[/tex], then  [tex]n(B- A) = 12-9 = \boxed{3}[/tex]

Taking

[tex]23 = n(A \cap B) + n(A- B) + n(B- A) = 9+ n(A- B) +3 = \boxed{12+ n(A- B) }[/tex]

Therefore,

[tex]n(A- B) =11 \implies n(A) - 9 = 11 \implies \boxed{n(A) = 20}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE