Question on integral calculus

Answer:
[tex]\displaystyle \int {4x^6 - 2x^3 + 7x - 4} \, dx = \boxed{ \frac{4x^7}{7} - \frac{x^4}{2} + \frac{7x^2}{2} - 4x + C }[/tex]
General Formulas and Concepts:
Calculus
Integration
Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]:
[tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle \int {4x^6 - 2x^3 + 7x - 4} \, dx[/tex]
Step 2: Integrate
∴ we have found the given integral.
---
Learn more about integration: https://brainly.com/question/27026907
Learn more about calculus: https://brainly.com/question/27520291
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration