[tex]\\ \rm\longmapsto \sqrt{-18}[/tex]
[tex]\\ \rm\longmapsto \sqrt{18}i[/tex]
[tex]\\ \rm\longmapsto \sqrt{9\times 2}i[/tex]
[tex]\\ \rm\longmapsto \sqrt{3(3)(2)}i[/tex]
[tex]\\ \rm\longmapsto 3i\sqrt{2}[/tex]
Answer:
A. [tex]\displaystyle 3i\sqrt{2}[/tex]
Step-by-step explanation:
[tex]\displaystyle \sqrt{-18} → \sqrt{[2][-1][9]}\\ \\ 3i\sqrt{2}[/tex]
As you can see, you need a perfect square to wourk with, which in this case is 9. Now, [tex]\displaystyle \sqrt{-1}[/tex] comes out as an imaginary number [tex]\displaystyle [i],[/tex]so pull it out of the radical alongside 3, [tex]\displaystyle \sqrt{9}.[/tex]
I am joyous to assist you at any time.