Free fall on a small airless planet. A rock released from rest to fall on a small airless planet falls y = gt^2 m in t sec, g a constant. Suppose that the rock falls to the bottom of a crevasse 20m below and reaches the bottom in 4 sec. A) Find the value of g. B) Find the average velocity for the fall. C) With what velocity did the rock hit bottom?

Respuesta :

If a rock released with an initial velocity = u

If it falls under gravity 'g' for 't' seconds,

Expression to find the distance covered will be,

[tex]y=ut+\frac{1}{2}t^2[/tex]

If the initial velocity is zero expression for the distance covered will be,

[tex]y=\frac{1}{2}gt^2[/tex]

Here, g = Gravitational pull Or acceleration due to gravity

A). If the distance covered 'y' = 20 m

     And t = 4 seconds

     By substituting these values in the expression,

     [tex]20=\frac{1}{2}g(4)^2[/tex]

     [tex]20=8g[/tex]

     [tex]g=2.5[/tex] m per sec square

B). Average velocity of a free falling body = [tex]\frac{\text{Initial velocity}+\text{Final velocity}}{2}[/tex]

    Initial velocity of the object = 0

    Final velocity = [tex]g\times t[/tex]

                           = [tex]2.5\times 4[/tex]

                           = [tex]10[/tex] meter per sec.

    Therefore, average velocity = [tex]\frac{0+10}{2}[/tex]

                                                    = [tex]5[/tex] meter per second

C). Since, the rock hits the bottom after [tex]4[/tex] seconds,

     Velocity with which the rock will hit the ground [tex]=gt[/tex]

                                                                                     [tex]=10[/tex] m per sec.

Learn more,

https://brainly.com/question/1998474

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE