Respuesta :
Solution :
We know,
Distance,
[tex]$S=ut+\frac{1}{2}at^2$[/tex]
[tex]$S=ut+0.5(a)(t)^2$[/tex]
For the first 20 ms,
[tex]$S=0+0.5(220)(0.020)^2$[/tex]
S = 0.044 m
In the remaining 30 ms, it has constant velocity.
[tex]$v=u+at$[/tex]
[tex]$v=0+(220)(0.020)[/tex]
v = 4.4 m/s
Therefore,
[tex]$S=ut+0.5(a)(t)^2$[/tex]
[tex]$S'=4.4 \times 0.030[/tex]
S' = 0.132 m
So, the required distance is = S + S'
= 0.044 + 0.132
= 0.176 m
Therefore, the tongue can reach = 0.176 m or 17.6 cm
Answer:
The total distance is 0.176 m.
Explanation:
For t = 0 s to t = 20 ms
initial velocity, u = 0
acceleration, a = 220 m/s^2
time, t = 20 ms
Let the final speed is v.
Use first equation of motion
v = u + at
v = 0 + 220 x 0.02 = 4.4 m/s
Let the distance is s.
Use second equation of motion
[tex]s = u t + 0.5 at^2\\\\s = 0 + 0.5 \times 220 \times 0.02\times 0.02\\\\s = 0.044 m[/tex]
Now the distance is
s' = v x t
s' = 4.4 x 0.03 = 0.132 m
The total distance is
S = s + s' = 0.044 + 0.132 = 0.176 m