Answer:
[tex]\displaystyle (\frac{f}{g})(x) = -(x^2 - x + 1)[/tex]
General Formulas and Concepts:
Algebra I
- Terms/Coefficients
- Factoring
- Functions
- Function Notation
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle f(x) = x^4 - x^3 + x^2[/tex]
[tex]\displaystyle g(x) = -x^2[/tex]
Step 2: Find
- Substitute in function values: [tex]\displaystyle (\frac{f}{g})(x) = \frac{x^4 - x^3 + x^2}{-x^2}[/tex]
- Factor: [tex]\displaystyle (\frac{f}{g})(x) = \frac{x^2(x^2 - x + 1)}{-x^2}[/tex]
- Simplify: [tex]\displaystyle (\frac{f}{g})(x) = -(x^2 - x + 1)[/tex]