A publishing company expects to sell 5000 copies of a new book from its web site, if the company charges $30 per book. The company expects that 500 more books would be sold for each price reduction of $2. What price would maximize the company's revenue?

Respuesta :

Solution :

Let the revenue be = R

Therefore, R = price x quantity

                  R = (30 - 2x) ( 5000 + 500x)

                     = [tex]150000 + 5000x - 1000x^2[/tex]

For the maximum revenue,

[tex]$\frac{dR}{dx} = 0$[/tex]

[tex]$-2000x+5000=0$[/tex]

[tex]$x=2.5$[/tex]

[tex]$\frac{d^2R}{dx^2}=-2000<0$[/tex]

At [tex]x=2.5[/tex], the revenue is maximum.

So the price for the maximum company revenue = [tex]$30-2x$[/tex]

                                                                                  [tex]$=30-2(2.5)$[/tex]

                                                                                  = 30 - 5

                                                                                  = 25

Therefore, the price that will maximize the company's revenue is $25.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE