The simplification of the expression is [tex]\frac{15\sqrt{2} }{4}[/tex]
First, find the factors of the number that ahs square root
Given,
= [tex]\frac{5}{\sqrt{2} } + \frac{9}{\sqrt{6} } - \frac{2}{\sqrt{50} } + \sqrt{32}[/tex]
Multiply the numerators by the surd of the denominators
= [tex]\frac{5 *\sqrt{2} }{\sqrt{2}*\sqrt{2 } } + \frac{9 *\sqrt{8} }{\sqrt{8}* \sqrt{8} } - \frac{2 *\sqrt{50} }{\sqrt{50 * \sqrt{50} } } + \sqrt{32}[/tex]
Multiply through and find their square root
= [tex]\frac{5\sqrt{2} }{2} + \frac{18\sqrt{2} }{8 } - \frac{10\sqrt{2} }{50} + 16\sqrt{2}[/tex]
To simply, we have
= [tex]\frac{5\sqrt{2} }{2}+ \frac{9\sqrt{2} }{4} + \frac{1\sqrt{2} }{5} + 16\sqrt{2}[/tex]
Find the LCM
= [tex]\frac{10\sqrt{2} + 45\sqrt{2}+ 4\sqrt{2} + 16\sqrt{2} }{20}[/tex]
Add through
= [tex]\frac{75\sqrt{2} }{20}[/tex]
= [tex]\frac{15\sqrt{2} }{4}[/tex]
Thus, the simplification of the expression is [tex]\frac{15\sqrt{2} }{4}[/tex]
Learn more about surds here:
https://brainly.in/question/4594146
#SPJ1