Respuesta :

The simplification of the expression is  [tex]\frac{15\sqrt{2} }{4}[/tex]

How to rationalize the denominator

First, find the factors of the number that ahs square root

Given,

= [tex]\frac{5}{\sqrt{2} } + \frac{9}{\sqrt{6} } - \frac{2}{\sqrt{50} } + \sqrt{32}[/tex]

Multiply the numerators by the surd of the denominators

= [tex]\frac{5 *\sqrt{2} }{\sqrt{2}*\sqrt{2 } } + \frac{9 *\sqrt{8} }{\sqrt{8}* \sqrt{8} } - \frac{2 *\sqrt{50} }{\sqrt{50 * \sqrt{50} } } + \sqrt{32}[/tex]

Multiply through and find their square root

= [tex]\frac{5\sqrt{2} }{2} + \frac{18\sqrt{2} }{8 } - \frac{10\sqrt{2} }{50} + 16\sqrt{2}[/tex]

To simply, we have

= [tex]\frac{5\sqrt{2} }{2}+ \frac{9\sqrt{2} }{4} + \frac{1\sqrt{2} }{5} + 16\sqrt{2}[/tex]

Find the LCM

= [tex]\frac{10\sqrt{2} + 45\sqrt{2}+ 4\sqrt{2} + 16\sqrt{2} }{20}[/tex]

Add through

= [tex]\frac{75\sqrt{2} }{20}[/tex]

= [tex]\frac{15\sqrt{2} }{4}[/tex]

Thus, the simplification of the expression is  [tex]\frac{15\sqrt{2} }{4}[/tex]

Learn more about surds here:

https://brainly.in/question/4594146

#SPJ1

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE