Determine the value of K that will cause f(x)=Kx^2+4x-3 to intersect the line g(x)=2x-7 at one point. SHOW ALL YOUR STEPS, DON'T USE DECIMALS INSTEAD USE FRACTIONS PLEASE!!!!!

Respuesta :

Given:

The function are:

[tex]f(x)=Kx^2+4x-3[/tex]

[tex]g(x)=2x-7[/tex]

The graph of f(x) intersect the line g(x) at one point.

To find:

The value of K.

Solution:

The graph of f(x) intersect the line g(x) at one point. It means the line g(x) is the tangent line.

We have,

[tex]f(x)=Kx^2+4x-3[/tex]

Differentiate this function with respect to x.

[tex]f'(x)=K(2x)+4(1)-(0)[/tex]

[tex]f'(x)=2Kx+4[/tex]

Let the point of tangency is [tex](x_0,y_0)[/tex]. So, the slope of the tangent line is:

[tex][f'(x)]_{(x_0,y_0)}=2Kx_0+4[/tex]

On comparing [tex]g(x)=2x-7[/tex] with slope-intercept form, we get

[tex]m=2[/tex]

So, the slope of the tangent line is 2.

[tex]2Kx_0+4=2[/tex]

[tex]2Kx_0=2-4[/tex]

[tex]x_0=\dfrac{-2}{2K}[/tex]

[tex]x_0=-\dfrac{1}{K}[/tex]

Putting [tex]x=x_0,g(x)=y_0[/tex] in g(x), we get

[tex]y_0=2x_0-7[/tex]

Putting [tex]x=-\dfrac{1}{K}[/tex] in the above equation, we get

[tex]y_0=2(-\dfrac{1}{K})-7[/tex]

[tex]y_0=-\dfrac{2}{K}-7[/tex]

Putting [tex]x=-\dfrac{1}{K}[/tex] and [tex]f(x)=-\dfrac{2}{K}-7[/tex] in f(x).

[tex]-\dfrac{2}{K}-7=K\left(-\dfrac{1}{K}\right)^2+4(-\dfrac{1}{K})-3[/tex]

[tex]-\dfrac{2}{K}-7=\dfrac{1}{K}-\dfrac{4}{K}-3[/tex]

[tex]-\dfrac{2}{K}-7=\dfrac{-3}{K}-3[/tex]

Multiply both sides by K.

[tex]-2-7K=-3-3K[/tex]

[tex]-2+3=7K-3k[/tex]

[tex]1=4k[/tex]

[tex]\dfrac{1}{4}=K[/tex]

Therefore, the value of K is [tex]\dfrac{1}{4}[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE