Respuesta :
Answer:
[tex]\boxed{\sf A) ( 1,0) }[/tex]
Step-by-step explanation:
A quadratic function is given to us and we need to find the x Intercept of the graph of the given function . The function is ,
[tex]\sf \implies f(x) = x^2 -2x + 1 [/tex]
For finding the x intercept , equate the given function with 0, we have ;
[tex]\sf \implies x^2 -2x + 1 = 0 [/tex]
Split the middle term ,
[tex]\sf \implies x^2-x-x+1=0[/tex]
Take out common terms ,
[tex]\sf \implies x( x -1) -1( x -1) = 0[/tex]
Take out (x - 1 )as common ,
[tex]\sf \implies (x - 1 )(x-1) = 0[/tex]
Equate with 0 ,
[tex]\sf \implies x = 1,1 [/tex]
Therefore the root of the function is 1. Hence the x Intercept is (1,0)
Hence the x Intercept is (1,0) .
Step-by-step explanation:
x² - 2x + 1 = 0
x² - (x + x) + 1 = 0
x² - x - x + 1 = 0
x(x - 1) - 1(x - 1) = 0
(x - 1)(x - 1) = 0
x = 1
Hence,
Option A